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ABSTRACT

El Niño–Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-

reaching teleconnections. This study uses simulations performedwith coupled general circulationmodels (CGCMs) to

investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven

precipitationvariability and slowly evolvingmean rainfall. First, adominant, time-invariantpatternof canonicalENSO

variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs

represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses)

is evaluated in simulationsof twentieth-century climate change.Possible changes inboth the temporal variability of this

pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections.

Models with better representation of the observed structure of the cENSO pattern produce winter rainfall telecon-

nection patterns that are in better accord with twentieth-century observations andmore stationary during the twenty-

first century. Finally, themodel-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum

of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation

response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies

rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions

likely to experience future rainfall anomalies that are without precedent in the current climate.

1. Introduction

Droughts andfloods have profound societal and economic

impacts. It is therefore imperative to better understand the

mechanisms affecting the mean state and variability of pre-

cipitation (P). In the simplest heuristicmodel, future changes

in regional P result from a gradual change in mean seasonal

P, which is superimposed upon P teleconnection patterns

arising from largely unaltered internal climate variability

modes (such as ENSO; Collins et al. 2010).

A number of physical mechanisms have been proposed

as contributory factors to the change in mean P in a

warmer climate. These include: 1) the ‘‘wet-get-wetter’’
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mechanism (Held and Soden 2006) associated with an in-

crease in tropospheric water vapor; 2) global energy bal-

ance constraints, which reduce the percentage increase in

global-mean P arising from greenhouse gas (GHG)-

induced surface and tropospheric warming (relative to the

percentage increase in water vapor caused by the same

GHG-driven warming; Allen and Ingram 2002); 3) the

poleward displacement of current zonal wet/dry patterns

as a result of shifts in atmospheric circulation, which affect

the horizontal and vertical transport of water vapor

(Marvel and Bonfils 2013; Seidel et al. 2008); and 4) the

‘‘warmer-get-wetter’’ mechanism linking the patterns of

tropical SST changes and rainfall changes (with tropical

rainfall shifting to regions where the SST increase exceeds

the tropical-mean warming; Xie et al. 2010).

Understanding the changes in P variability in a

warmer climate is challenging for at least two reasons.

First, while most climate models consistently project an

increase in the frequency of extreme ENSO events un-

der increased GHG forcing (Cai et al. 2014, 2015;

Capotondi 2015), there is considerable model disagree-

ment in projected twenty-first-century changes in the

spatial structure and amplitude of ENSO (Coelho and

Goddard 2009; Collins et al. 2010; Kao and Yu 2009;

Vecchi and Wittenberg 2010). This yields substantial

intermodel differences in projected future hydrological

changes, both in the tropics and in regions affected by

ENSO-driven teleconnections (Meehl and Teng 2007;

Kug et al. 2010; Stevenson 2012).

Second, there are also large uncertainties in how

ENSO-mediated tropical and extratropical P responses

are influenced by GHG-induced changes in the mean

state (e.g., spatially nonuniform tropical SST warming)

or changes in atmospheric circulation and moisture

content (see Huang et al. 2013; Meehl and Teng 2007;

Ruff et al. 2012; Seager et al. 2012; Stevenson et al.

2012). The latter issue is important, even if the spatial

and temporal characteristics of ENSO are unaltered in

the future climate. For example, Watanabe et al. (2014)

show that ENSO-induced P variability will increase in

the equatorial Pacific under global warming, even in the

absence of a robust change in SST variability.

A number of recent studies have relied on single-

model AGCM simulations forced with idealized pat-

terns of greenhouse warming and El Niño–induced SST

changes. To study the origin of the projected twenty-

first-century intensification ofElNiño–driven precipitation
variability in the central and eastern equatorial Pacific,

Power et al. (2013) performed a set of idealized AGCM

simulations. They found that the contribution of twenty-

first-century changes to the amplitude of ENSO-driven

SST variability is secondary compared with nonlinear

ENSO responses to mean surface ocean warming. In a

complementary study, Chung et al. (2014) showed that

the projected tropical Pacific P response to El Niño
events strongly depends on the spatial structure of the

imposed warming.

Further insights were provided by Zhou et al. (2014),

who generated three ensembles of idealized AGCM

simulations forcedwith a 2-yr-long El Niño composite of

SST anomalies (see their Fig. 2). Two of these sets of

simulations also included an SST warming field that was

either spatially uniform or displayed a prescribed pat-

tern. Although the El Niño composite incorporated the

full development and decay of an ENSO event, the au-

thors only analyzed the results for the December–

February (DJF) season. They found that in both the

uniform and nonuniform warming cases, the imposed

SST warming substantially reduced the barrier to deep

convection in the eastern equatorial Pacific, causing the

El Niño–induced P response in DJF to intensify and

move eastward. In turn, the shifted anomalies in tropical

convection forced the Pacific–North American (PNA)

teleconnection pattern to move eastward and intensify.

All changes were larger when a nonuniform pattern of

SST warming was prescribed. Zhou et al. (2014) con-

firmed these results using Atmospheric Modeling In-

tercomparison Project (AMIP) simulations forced by

1) the time-varying observed SST evolution over 1979–

2008 (instead of a 2-yr idealized El Niño composite), 2) a

superimposed spatially uniform SST increase (amip4K

experiments), or 3) a superimposed global spatially

patterned SST increase (amipFuture experiments).

In the present study, we use simulation output from

fully coupled atmosphere–ocean GCMs to partition fu-

ture P anomalies into changes in the mean state of P,

ENSO-drivenP variability, and a future enhancement in

the P response to ENSO.We investigate the near-global

pattern of P responses to both phases of ENSO using 71

simulations of historical and future climate change from

phase 5 of the Coupled Model Intercomparison Project

(CMIP5; Taylor et al. 2012). The twenty-first-century

climate change results are for representative concen-

tration pathway 8.5. This choice is justifiable because the

current carbon dioxide emissions continue to track

slightly above this high-end emission pathway (Peters

et al. 2013). Splicing the historical simulations (which

typically end in December 2005) with the RCP8.5 runs

facilitates the comparison with observations over a

longer period of the observational record. The spliced

CGCM simulations, referred to subsequently as HIST18.5,

encapsulate our best quantitative estimates of future

changes in the mean climate state, in the ENSOmode of

variability, and in their respective uncertainties (arising

from differences in model structure, forcing, and

responses).
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While use of a large multimodel ensemble is advanta-

geous for identifying robust teleconnection behavior, the

diagnosis of results from coupled simulations also presents

certain challenges. First, because SSTs in CMIP5 models

are predicted instead of prescribed, teleconnection prop-

erties are sensitive to intermodel differences in both the

mean-state changes and in the amplitude and structure of

ENSO-driven SST variability (Coats et al. 2013; Meehl

and Teng 2007; Stevenson 2012). Second, certain features

of the P response to global warming resemble ENSO-

induced P variability (Lu et al. 2008; Marvel and Bonfils

2013), thus complicating the interpretation of simulated P

changes. Third, coupled model errors in ENSO charac-

teristics (Capotondi et al. 2015a; Guilyardi et al. 2009) and

in the Pmean state (Marvel and Bonfils 2013) impact the

simulation of ENSO-driven P responses (Coelho and

Goddard 2009; Joseph and Nigam 2006; Langenbrunner

and Neelin 2013).

Our analysis strategy relies on the identification of a

dominant, time-invariant pattern of canonical ENSO

(cENSO)1 SST variability in observations.We are aware

that ENSO exhibits a diverse range of spatial patterns,

with SST anomalies peaking at different longitudes, as

described in an extensive recent literature that is sum-

marized in Capotondi et al. (2015b). However, given the

large intermodel spread in present-day ENSO simula-

tions as well as the large uncertainty in projected ENSO

changes, we find it useful to focus on one ‘‘typical’’

ENSO pattern. This pattern is then used to study the

stationarity and amplitude of P teleconnections, their

contribution to future changes in P, and the impact of

model quality on the twenty-first-century projections.

Analyzing the underlying thermodynamic and dy-

namical mechanisms associated with the ENSO-driven

P change under global warming is outside of the scope of

this study. Instead, based on our single, time-invariant

cENSO pattern, we develop a simple common frame-

work useful for determining 1) how well different

models capture a key mode of observed internal vari-

ability, 2) how the amplitude of this mode evolves in

observations and coupled models2, and 3) whether a

better simulation of the observed cENSO pattern

translates to improved performance in simulating ob-

served teleconnection behavior. This framework is also

useful for decomposing the model-predicted changes in

P into different components.

2. Datasets and methods

a. Observed cENSO mode

Weestimate the cENSOmodeby empirical orthogonal

function (EOF) analysis of two different observational

datasets (section S1): version 3b of the NOAAExtended

Reconstructed SST dataset (ERSSTv3b; (Smith et al.

2008) and version 1.1 of the Met Office Hadley Centre

Sea Ice and SST dataset (HadISST1.1; (Rayner et al.

2006). We first computed local (grid point) monthly-

mean SST anomalies (SSTA) relative to the climatolog-

ical annual cycle over 1900 to 1909. The choice of the

reference period is primarily for visualization purposes

and does not affect the main findings of this study. To

remove an overall global-scale warming signal and focus

attention on internal variability, we subtracted the time-

evolving global-mean SSTA (GMSSTA) from the local

SSTA, yielding the monthly-mean SST residuals (SSTR).

The SSTRand their EOFs have, by construction, an area-

weighted spatial average of zero. The cENSO mode

(Fig. 1a) is then defined as the leading EOF of the

monthly-mean SSTR covariance matrix (for further de-

tails, see section S4 in the supplemental material, avail-

able online at http://dx.doi.org/10.1175/JCLI-D-15-0341.

s1). The cENSO pattern resembles previously described

drought-conducive SST anomaly patterns (Capotondi

andAlexander 2010; Schubert et al. 2009). The associated

cENSO principal component time series (cENSO-PC1;

Fig. 1b) is highly correlated with the observed Niño-3.4
index (not shown) with a correlation of r1902–2012 5 0.85.

Performing the EOF analysis using SSTR (instead of

using SSTA) better separates the leading mode of ENSO

variability from a global-scale warming signal. This signal

is evident in the second EOF of SSTR (Figs. 1d,e; see also

section S5 and Fig. S1).

b. El Niño life cycle estimated from the observed
cENSO mode

Although cENSO is a single time-invariant mode, it

can successfully reproduce important aspects of the

ENSO life cycle. To illustrate this, the life cycle of El

Niño is calculated as the 24-month composite of the

cENSO-PC1 time series for five major El Niño events

[1972/73, 1982/83, 1987/88, 1997/98, and 2009/10; event

selection follows Zhou et al. (2014)]. The composite time

series are computed from January of the year of El Niño
development (year 0) to December of the year of its

decay (year11). To allow a direct comparison with Fig. 2

of Zhou et al. (2014), which shows the observed time–

longitude SST evolution of a typical El Niño event, we

projected our 24-month composite onto the spatial av-

erage (over 58N–58S) of the cENSO pattern at discrete

longitudes (in the range 1208E–808W; see Fig. 1c). By

1Here the term ‘‘canonical’’ is used to describe ‘‘standard’’ or

‘‘typical’’ ENSO events; it does not imply that the cENSOmode is

derived from canonical correlation analysis.
2 In the idealized experiments, this amplitude is constant, or

specified in advance.
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definition, our time-invariant cENSO mode cannot cap-

ture the eastward propagation of positive SST anomalies

seen in Fig. 2 of Zhou et al. (2014). We note, however,

that other aspects of the Zhou et al. ENSO life cycle are

well replicated: warm anomalies develop in the central

Pacific in summer, peak in winter of year 0, and then

decay, followed by a La Niña event in year 1 (Fig. 1c).

c. Observed cENSO-driven hydrological responses

We use three different hydrological variables to il-

lustrate the influence of the cENSO mode on regional

hydroclimate: 1) column-integrated water vapor over

oceans (W), measured by the satellite-based Special

Sensor Microwave Imager (SSM/I; Mears et al. 2007);

2) precipitation estimated from the Global Precipitation

Climatology Project (GPCP) data (Adler et al. 2003);

and 3) the continental Palmer Drought Severity Index

(PDSI), calculated using the Penman–Monteith poten-

tial evapotranspiration (Dai 2011; Dai et al. 2004). For

each variable, anomalies were defined relative to the

climatological annual cycle computed over the full ob-

servational period of the dataset. We then performed an

EOF analysis and identified the leading observed W, P,

and PDSI PC time series (see Fig. 2a) that are most

highly correlated with the observed cENSO-PC1 [PC1

forW and P and PC2 for PDSI, consistent with Dai et al.

(2004)].

To estimate the cENSO-driven hydrological telecon-

nection patterns, we calculated rDJF, the contempora-

neous correlation between the seasonal-mean (DJF

only) time series of cENSO-PC1 and the local W, P, or

PDSI (Figs. 2b–d). Additionally, we computed rfkg,
which relies on monthly-mean time series for all calen-

dar months (Figs. S2a–c). The lag k is the value of k (in

months) that maximizes r at each location. Tele-

connections calculated using rDJF and rfkg yield very

similar results; the latter are primarily influenced by the

strong teleconnections in DJF.

FIG. 1. Leading EOFs (8C) of observed monthly-mean SST anomalies calculated with the ERSSTv3b dataset and associated PCs. PCs

forHadISST SST data are also shown. (a) ENSO-like (cENSO)mode calculated using SST residuals (SSTRs), after removal of the global-

mean SST anomalies, and (b) the associated cENSO-PC (c) cENSO-based composite analysis of time–longitude section of SST anomalies

(8C) showing the development and decay of El Niño events (58N–58S mean). The temporal information of this composite analysis is

derived from the cENSO-PC1 time series; the spatial information is derived from the cENSO pattern. (d) Leading mode of SST anomalies

after regressing out the cENSO pattern, and (e) the associated PC. The PCs are scaled to have zero mean and unit variance. The spatial

patterns are scaled to have 8C unit amplitude. For each EOF, the total explained space–time variance of the SSTRs is given (in %), along

with the spatial average of the eigenvector. Compared to the ‘‘global-mean included’’ case (Figs. S1a,b), the leading modes capturing

cENSO and large-scale warming aremore clearly separated, and PCs are less sensitive to structural differences between the HADISST1.1

and ERSSTv3b datasets (as expressed by r correlation values).
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d. HIST18.5 simulations

After regridding to a common T42 horizontal grid

(see section S3), we analyze model SST and P data from

1) CMIP5 HIST simulations with estimated historical

changes in anthropogenic and natural forcings and

2) RCP8.5 simulations forced by projected twenty-first-

century changes in GHGs and anthropogenic aerosols.

FIG. 2. Observed and simulated hydrological teleconnections driven by temporal variability in the ENSO-like

pattern. (a) cENSOPCandmost highly correlated PC time series forW (PC1),P (PC1), and PDSI (PC2; 3-month lag).

Because of the cENSO-PDSI lag, the PDSI time series is time-shifted by 3 months to facilitate visual comparison of

‘‘between variable’’ covariance relationships. All monthly time series are low-pass filtered. (b)–(d) Observed DJF

cENSO-driven W, P and PDSI teleconnection patterns. Each pattern is calculated over the length of the W, P and

PDSI observational record. The pattern correlation between (c) and (b) [(c) and (d)] is 0.67 (0.76) over ocean (land).

(e),(f) DJF teleconnection patterns averaged over the TOP20models for the 1900–99 and the difference between the

2000–99 and the 1900–99 periods. Isolines of the teleconnection patterns for the 1900–99 period displayed in (e) (light

blue and gray lines) are reproduced in (f). Stippled areas indicate pronounced intermodel agreement (jS / Nj . 1.0,

where S (N) represents the model average (the intermodel standard deviation) of the teleconnection maps).
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Model SSTRs were defined as for the observations, with

subtraction of each model’s local climatological

monthly-mean and global-mean SSTA.

For each model, SSTRs were used for two purposes:

calculating the model cENSOmode and then projecting

onto the observed cENSO mode (Bonfils and Santer

2011). The model cENSO mode calculation allows di-

rect comparison with the observational cENSO pattern

(see section S4). The projection of each model’s SSTRs

onto the observed cENSO pattern yields ‘‘pseudo-

principal component’’ time series (not shown), which

capture the temporal evolution of the spatial covariance

between the observed cENSO pattern and the time-

varying model SSTRs. Pseudo-PCs were employed to

1) assess how well models reproduce the observed

magnitude of global-scale SST variability associated

with cENSO3 and 2) calculate the model cENSO-driven

P teleconnection patterns over the twentieth and twenty-

first centuries (Figs. 2e,f; see also Figs. S2d,e and S4).As in

the case of the observations, the model P teleconnection

pattern is the contemporaneous correlation (or the

maximum absolute value of the lagged correlation) be-

tween each model’s pseudo-PC and its local P time

series.

e. Model performance metrics

We used three performance metrics to assess each

model’s ability to replicate the observed cENSO mode.

These metrics gauge the fidelity with which the models

represent the spatial structure of the observed cENSO

pattern (rEOF1; Figs. 3a and S5a), the amplitude of the

observed temporal variability of cENSO-PC1 (s; Figs. 3a

and S5b), and the observed pattern of teleconnections

between the variability of cENSO and precipitation

(rTEL; Figs. 3b and S5c,d). The rEOF1 metric is the cen-

tered spatial correlation between the observed cENSO

pattern (Fig. 1a) and each simulated cENSO pattern (see

Fig. S3). The s197922012 metric is the temporal standard

deviation of the monthly-mean pseudo-PCs, calculated

over the 34-yr period of satellite-based SST measure-

ments. Finally, the metric rTEL is the centered4 spatial

correlation between the simulated and observed pre-

cipitation teleconnection patterns (Fig. S4). Further de-

tails of these metrics are given in section S6 of the

supplemental material.

f. Composite analyses

The P teleconnection patterns are estimated by cor-

relating each model’s pseudo-PC and its local P time

series. Correlations are bounded between21 and 1, and

are insensitive to differences in the amplitude of the

two time series being correlated.5 We therefore de-

cided to use a composite analysis of ENSO events [as in

Stevenson (2012) and Meehl and Teng (2007)] to in-

vestigate changes in the amplitude of the P response to

ENSO events. Two types of composite analyses (CA)

were performed in this study. For each CA and each

simulation, large La Niña–like and El Niño–like events

were identified from the detrended model pseudo-PC

time series, using an amplitude threshold of.1 or,21,

respectively. We then averaged the corresponding DJF

P response for each set of events. The P anomaly time

series were not detrended in composite analysis 1 (CA1)

but were in composite analysis 2 (CA2). Over the 1900–

99 period, the two composites yield very similar results,

because the P time series show relatively small trends

over this period. Over the 2000–99 period, however,

CA1 (Fig. 4a) captures both the change in P mean state

(Fig. 4c) and any change in the ENSO-induced vari-

ability ofP (Fig. 4b). In contrast, CA2 largely reflects the

cENSO-drivenP variability. By comparing the results of

CA2 for the 1900–99 and the 2000–99 periods, we can

identify a change in cENSO-driven P variability be-

tween the two centuries (Fig. 4d). Seager et al. (2012)

used a similar technique to determine whether global

warming causes intensified interannual variability in the

difference of precipitation and evaporation (P 2 E).

3. Results

a. Observed teleconnections

To account for the pronounced seasonality of ENSO

teleconnections, and to compare our results with those of

3 Pseudo-PCs are often used in pattern-based detection and at-

tribution studies, in which a model-predicted anthropogenic fin-

gerprint is searched for in observations (see, e.g., Santer et al.

2009). They also have been used to investigate the aliasing of a

large-scale anthropogenic warming signal in the Pacific decadal

oscillation index (Bonfils and Santer 2011) and to assess model

quality in simulating the Madden–Julian oscillation (Sperber and

Kim 2012). Sperber et al. (2005) have noted that use of different

basis functions (e.g., leading EOFs estimated separately from ob-

servations and individual models) can hamper interpretation of

intermodel and model-versus-observational differences. In con-

trast, projecting observational and model data onto a common

basis function—as we do here—facilitates the direct comparison of

modeled and observed teleconnection behavior. We are not aware

of any other paper in the literature that uses pseudo-PC time series

to calculate P teleconnections.

4 The centered statistic measures the similarity of two patterns

after removal of their spatial means.
5 In consequence, amplification of the P response to ENSO

events in the twenty-first century does not necessarily yield larger

absolute values of the correlation coefficients.
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FIG. 3. Relationship between model skill in simulating the observed cENSO pattern (as measured by the

rEOF1 metric) and (a) model skill in simulating observed cENSO variability sOBS and (b) the observed

teleconnection patterns, rTEL (based here on all calendarmonths). (c) Relationship between the amplitude of

twenty-first- and twentieth-century cENSO variability (both calculated as the temporal standard deviation of

the detrendedmonthly-mean pseudo-PC time series). (d) Relationship between themodel skill in simulating

the observed cENSO pattern and the overall model-simulated cENSO changes in the twenty-first century.

(e) DJF teleconnection stationarity, measured as the centered spatial correlation between the P telecon-

nection patterns for the 1900–99 and 2000–99 periods. Metrics displayed in (a) and (b) are the realization-

ensemble mean statistic for each model (see Table S1). Data in (c)–(e) are displayed for each individual

realization. The TOP20 models are represented with solid symbols. The gray shading in (d) represents the

two-tailed 95% confidence interval of internal variability, calculated as «3 1.96, where « is the standard error

of the sampling distribution of 100-yr overlapping unforced trends in the TOP20 control runs (with overlap5
10 yr). The green shaded areas in (a),(b), and (d) denote rEOF1 values. 0.83, the cutoff for definition of the

TOP20models, while the yellow shaded area in (b) indicates the 20 models that best reproduce the observed

teleconnections (based on the rTEL metric). The orange dotted lines in (a) delimit the 20 models that best

reproduce the observed s197922012, as shown in Fig. S5b of the supplementary online material.
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FIG. 4. Decomposition of the total DJF precipitation response (mmday21) to future cENSO events using the TOP20models. (a) Future

(2000–99) and (b) present-day (1900–99) P anomalies (both relative to the same historical baseline) in response to La Niña– and El Niño–
like events (based on the CA1 technique; see text). The respective spatial correlations with the GPCP-based composite maps (computed

over the 1979–2012 period) are indicated in the left corner of the panels. (c) Change inmeanDJFP (this panel is independent of theENSO

phase). Note that rectangles mark areas for further regional analysis; see Fig. 7. (d) Enhanced futureP response to La Niña– and El Niño–
like events from CA2 (see text). This amplification component is the difference between future and the present-day detrended P com-

posites. Vertical strips highlight regionswith statistically significant differences under a two-sided t test at a 10% level, with a sample size of

20 models.
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idealized AGCM experiments, our analysis (unless oth-

erwise indicated) focuses on DJF, the peak season of

ENSO impact. Figure 2a shows that the cENSO-PC is

highly correlated with the leading PC of column-

integrated water vapor over oceans (r[1988–2008] 5 0.85)

and PC1 of precipitation (r[1979–2012] 5 0.82), as well as

with the second PC of the continental PDSI (r[1902–2008]5
0.82). In terms of the spatial patterns of these relation-

ships, we find that extensive areas of the tropics are

characterized by strong negative and positive correlations

between cENSO variability and changes in hydroclimate

(Figs. 2b–d). Despite differences in measurement plat-

forms, instrumentation, spatial coverage, and the length

of the observational record, the teleconnection patterns

in the P,W, and PDSI fields are very similar (Figs. 2b–d).

This clearly illustrates that the temporal behavior of the

cENSO pattern has a broad influence on a variety of in-

terrelated aspects of hydroclimatic variability (Dai and

Wigley 2000; Dai et al. 2004; Trenberth et al. 2005).

In the positive phase of the cENSO pattern (corre-

sponding here to a La Niña event), the colder central-

eastern equatorial Pacific is associated with reduced

precipitation, while enhanced precipitation occurs in the

far western Pacific and over the Maritime Continent

(Fig. 2c). Over land, drier conditions prevail across

southernNorthAmerica, EastAfrica, and southern South

America, while wetter conditions are found in northern

South America, southern Africa, southwest India, and

some parts of Australia, in agreement with results from

previous studies (e.g., Dai and Wigley 2000).

b. Model performance evaluation

Wefirst employ the rEOF1metric to identify the models

with the best representation of the observed cENSO

pattern. The rEOF1 values span the range 0.62 to 0.91; the

associated model rankings are given in Fig. S5a. We use

the ranked rEOF1 results (Fig. S5a) to select the ‘‘TOP20’’

models (rEOF1 . 0.836). Since model errors are complex

functions of space, time, and variable (see, e.g., Santer

et al. 2009), alternate metric choices would likely yield

different model rankings. For our specific application,

however, model performance in representing the ob-

served cENSO pattern is of primary importance for ac-

curate simulation of cENSO-driven teleconnection

patterns. This provides considerable justification for our

use of rEOF1 to select better performing models.

The TOP20 models are markedly more successful in

reproducing both the observed amplitude of cENSO

temporal variability (s197922012, Fig. 3a) and the cENSO-

driven P teleconnection patterns (rTEL), irrespective of

whether these metrics are calculated using all months

(Figs. 3b) or all DJFs of the pseudo-PCs (Fig. S5e). For

example, in both the ‘‘all months’’ and ‘‘individual DJF’’

cases, 17 of the models that best capture the observed

rTEL pattern are in the TOP20 set. Similarly, most

models that produce a pseudo-PC time series with

temporal variability that is smaller than observed are

also unable to satisfy the TOP20 rEOF1-based criterion

(Fig. 3a).7

c. Changes in cENSO

Models that perform well in reproducing the spatial

structure of the observed cENSO pattern (rEOF1) also

tend to display larger amplitude of cENSO andNiño-3.4
variability for the historical period. We note, however,

that the rEOF1 metric does not help to reduce the spread

of model results in the change in amplitude of the

twenty-first-century temporal variability of the cENSO

pattern (Fig. 3c). The TOP20 models (all denoted by

solid symbols) do not project a robust increase or re-

duction in cENSO variability. A comparison of the

twentieth- and twenty-first-century results indicates that

five TOP20 models project an increase in magnitude of

the cENSO variability (CESM1-CAM5, CMCC-CMS,

GFDL CM3, MPI-ESM-LR, MPI-ESM-MR; see http://

www.ametsoc.org/PubsAcronymList for expansions of

model names), five models project a reduction in cENSO

variability (CCSM4, GFDL ESM2M, HADGEM2-ES,

IPSL-CM5A-MR, NORESM1-M), and 10 models dis-

play no appreciable change (ACCESS1.0, ACCESS1.3,

BNU-ESM, CanESM2, CESM1-BGC, CMCC-CM,

CNRM-CM5, HADGEM2-AO, HADGEM2-CC,

NorESM1-ME). Most models that are not included the

TOP20 group underestimate the observed temporal

variability of the cENSO PC in the twentieth century,

and continue to project low pseudo-PC variability in the

twenty-first century (Fig. 3c).

6 The choice of 20 models is motivated by Fig. S5a, which natu-

rally separates the models into two groups: those with rEOF1. 0.83

and with relatively small intermodel correlation differences, and

those with much lower rEOF1 values. We did not use other criteria

to select the ‘‘best’’ models.

7 Relatively low temporal variance in the pseudo-PC may occur

because of two factors: 1) the observed tropical Pacific variability is

underestimated in the model of interest and/or 2) the simulated

amplitude of tropical Pacific variability is realistic, but there are

substantial spatial biases in the model SST fields, which result in

poor projection of the simulated SSTR fields onto the observed

cENSOpattern. The strong correlation across realizations between

the amplitude of the variability of pseudo-PCs and Niño-3.4 time

series (Fig. S5f) suggests that the simulated tropical Pacific SST

variability is the main driver of the temporal variance in the

pseudo-PCs. This supports hypothesis 1 above.
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The observed cENSO pattern and all simulated

SSTRs have an area-weighted spatial average of zero

(see section 2a). By definition, therefore, trends in the

cENSO pseudo-PCs are insensitive to spatially uniform

ocean warming, but should be sensitive to warming

with a spatial structure resembling the cENSO SST

pattern itself (section S5). Trends in the cENSO pseudo-

PCs over 2000–99 do not show consistent behavior

across the CMIP5 models (Fig. 3d). This appears to

contradict results from several previous studies, which

found that most CMIP5models tend to producemore El

Niño–like conditions in the twenty-first century (Bayr

et al. 2014), with faster warming in the tropical eastern

Pacific relative to the entire tropical Pacific basin (Power

et al. 2013; Zhou et al. 2014). We hypothesize that this

apparent contradiction arises from the effects of inter-

model differences in extratropical SST variability

(which are projected onto the cENSO pattern) rather

than from the lack of a consistent El Niño–like mean

SST warming pattern in response to increasing GHGs.

d. Spatial stationarity of ENSO-driven P patterns

For the TOP20 case, the multimodel average ENSO-

driven P teleconnection pattern reproduces many key

features of the observed pattern (Figs. 2c,e; Figs. S2b,d).

This holds for calculations involving DJF only and all

calendar months. The multimodel average P pattern in

the TOP20 models (Fig. 2e) has smaller amplitude fea-

tures than the corresponding observed pattern (Fig. 2c).

This is mainly due to such factors as spatial smoothing

(arising from averaging of results over realizations and

models) and to intermodel differences in the spatial

features of the teleconnection patterns, rather than to a

muted P response in each individual model (Fig. S4).

The simulated teleconnection patterns for the twentieth

and twenty-first centuries (which are both calculated

relative to the twentieth- and twenty-first-century mean

states, respectively) are almost identical in the ‘‘all cal-

endar months’’ calculations (Fig. S2e). This result im-

plies that the cENSO-driven P teleconnection spatial

patterns estimated from the TOP20 multimodel en-

semble are largely stationary.

Over the DJF season (when ENSO-mediated P vari-

ability is most pronounced), the multimodel average P

teleconnection patterns are very similar in the twentieth

and twenty-first centuries (Figs. 2e,f; r1900–1999/2000–20995
0.95). When analyzed individually, however, the models

(Fig. S4) show a large spread in the spatial similarity

between their twentieth- and twenty-first-century tele-

connection patterns.

The spatial stationarity of DJF patterns is most pro-

nounced in models with a large amplitude of DJF

pseudo-PC variability in the twentieth century (Fig. 3e).

In contrast, models that underestimate temporal vari-

ability of the observed cENSO pattern yield spatial DJF

teleconnection patterns that are less stationary and

more easily disrupted by other sources of internal vari-

ability (Coats et al. 2013). This suggests that the spatial

stationarity metric is sensitive to the amplitude of

cENSO events, which affects the degree to which deep

convection is triggered in the tropical Pacific region (not

shown), and thus the strength of the atmospheric

teleconnections.

e. Amplification of the cENSO-driven P responses

In this section, we examine the individual components

that contribute to the projected changes in twenty-first

century P anomalies in response to ENSO variability

(see Figs. 4 and S6). We first apply composite analysis

1 (section 2e), identifying all large La Niña–like and El

Niño–like events from the model pseudo-PCs, and then

averaging the corresponding total (i.e., nondetrended)

DJF P response for each set of events. Over the 1900–99

period, this analysis shows that the TOP20 models re-

liably capture many of the features of the observed

pattern of P response to cENSO variability (Fig. 4b).

When CA1 is performed over the 2000–99 period

(Fig. 4a), these features of the twentieth century tele-

connection pattern are still visible, but they are also

imprinted with the change in the mean DJF P between

the twentieth and twenty-first centuries (Fig. 4c). This

change in mean state is spatially complex. It is influ-

enced by furthermoistening of the currently wet areas of

the tropics and storm-track regions, and by further

drying of currently dry portions of the subtropics. This

behavior is typically associated with the ‘‘wet-get-wet-

ter’’ mechanism; (Held and Soden 2006; Huang et al.

2013). The pattern of mean state change also reflects

increased rainfall over the equator relative to the

southeast tropical Pacific, which is consistent with the

‘‘warmer-get-wetter’’ mechanism (Huang et al. 2013).8

Assuming a linear response ofP to the future behavior

of ENSO, the total P associated with future ENSO

events (Fig. 4a) should be well described by summing

the historical P responses to cENSO variability (Fig. 4b)

and the change in mean P (Fig. 4c). However, a number

of AGCM-based studies (e.g., Chung et al. 2014; Huang

et al. 2013; Power et al. 2013; Zhou et al. 2014) suggest

that such a simple partitioning of the P response

8One caveat is that some component of the mean change in P

could also be a result of ENSO-driven changes in the variability of

P. Examples of such behaviormight involve a change in the relative

frequency of El Niño and La Niña events, or enhancement of the

precipitation response to El Niño events (relative to La

Niña events).
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provides an inadequate explanation for the projected

changes in P. Since deep convection responds to SST

thresholds, changes in equatorial SSTs due to global

warming are expected to alter the atmospheric response

to ENSO, even in absence of significant changes in

twenty-first-century ENSO events. To estimate this

nonlinear contribution to the total P response in the

CGCMs, we followed the approach of Seager et al.

(2012), and detrended both the model pseudo-PCs of

SST and the model P data prior to constructing com-

posites (CA2). In most regions, the difference maps

between the twentieth- and twenty-first-century com-

posites reveal an amplified P response to both El Niño
and La Niña phases (Fig. 4d). In the El Niño case, the

intensification is more pronounced in the central-

eastern Pacific.

Is the amplified response solely caused by a projected

change in the amplitude of ENSO-driven SST variabil-

ity? To address this question, we estimated the non-

linear ‘‘missing term’’ using the three sets of models—

those showing an increase (s[), a decrease (sY) or no

discernible projected change (s/) in the amplitude of

pseudo-PC variability between the twentieth and

twenty-first centuries. The results are displayed in Fig. 5.

We find that the P variability is projected to intensify,

even in absence of a change in cENSO amplitude (the

s/ case). The amplification of P variability, however, is

also modulated by the projected change in the magni-

tude of s: it is larger in simulations where s is projected

to increase (s[) and damped in simulations where s is

projected to decrease (sY).

When near-future (2017–50) and more distant future

(2059–92) 33-yr9 periods are compared (Figs. S7 and S8),

it is evident that both themagnitude of themeanP change

(Figs. S7c and S8c) and the amplification components

(Figs. S7d and S8d; see also Fig. 5) become larger as the

tropical mean SST warming increases and the GHG-

forced global atmosphere becomes warmer and moister.

Consistent with previous findings, the TOP20 models

show that the center of action of wintertime cENSO-

driven P responses is projected to shift eastward in the

equatorial Pacific and near the North American Pacific

west coast (cf., e.g., Figs. 4b and 4d for the El Niño case).

To better understand this result, we compute, after

Power et al. (2013), the P anomalies along the equator

for the ElNiño case. Comparison of the solid and dashed

black lines in Fig. 6a reveals that the amplification

component in the eastern tropical Pacific is accompa-

nied by a clear eastward shift of the positive P anoma-

lies. This shift, which occurs even in the s/ simulations

(blue lines) is accentuated in the s[ simulations (red

lines), but is reduced in the sY simulations (green lines).

During La Niña events, the negative P anomalies in-

tensify in the central Pacific in all cases (s/, s[, sY).

The twenty-first-century negative P anomalies in the

eastern tropical Pacific (east of 1608E) are also located

eastward of their historical counterparts, especially in

the s[ simulations (red lines), as compared with the sY

simulations (green lines). Given that the eastern equa-

torial Pacific is typically dry, except during El Niño
events, the changes depicted in (b) are likely related to

changes in the climatology, which in turn are related to

the changes during El Niño events (see Fig. 6a, which

shows little change in the green lines, and the greatest

change between the red lines). Similar results from the

North Pacific region are discussed in the next section.

4. Discussion

a. Mechanisms

As noted in the previous section, future DJF pre-

cipitation responses to ENSO-like events can be

decomposed into the sum of three components: 1) a

mean-state change in P, 2) the historical P anomalies in

response to cENSO variability, and 3) a component

capturing the future amplification and locational shift of

the historical P anomalies associated with ENSO

(Fig. 4). Although component 3 is affected by model

uncertainties in s (the amplitude of the twenty-first-

century variability in the cENSO pseudo-PCs), this

component amplifies the cENSO-driven P variability in

most regions (Fig. S9) and increases the magnitude of

cENSO-driven extreme dry/wet anomalies at locations

already sensitive to ENSO events.

Several different mechanisms can be invoked to ex-

plain why the P responses to El Niño and La Niña are

projected to intensify and shift eastward in the future.

First, the Held and Soden (2006) wet-gets-wetter

mechanism in a warmer and moister atmosphere does

not operate exclusively on climatologically wet and dry

features. This mechanism can also impact regions that

are affected by ENSO and are experiencing either

anomalously wet or dry conditions. The net effect is to

further enhance wetting or drying of these regions, de-

pending on the ENSO phase. Second, the mean SST

warming and the detailed spatial pattern of the pro-

jected warming in the tropical Pacific (e.g., Chung et al.

2014; Zhou et al. 2014) both seem to play a major role in

triggering the eastward shift and intensification of 1) the

9 The 33-yr analysis time scale is determined by the length of the

GPCP observational dataset (which spans the period from 1979 to

2012). The two selected analysis periods are 38 years and 80 years

after the beginning of the observational period.
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main convection centers in the tropics (Figs. 6a,b) and

2) the teleconnected P responses in the North American

sector (Figs. 6c,d).

Climatologically, the eastern Pacific is dry and cool,

whereas the easterly trade winds drive warm water

toward the western Pacific and create favorable con-

ditions for upwelling of cold water in the east Pacific.

The twenty-first-century anthropogenic warming sig-

nal in most CMIP5 models tends to be larger in the

eastern equatorial Pacific than in the surrounding

ocean waters (according to Bayr et al. 2014; Cai et al.

2014; Power et al. 2013). This asymmetric pattern of

temperature change has been identified in coupled

climate simulations (Vecchi et al. 2006) and is consis-

tent with the weakening of the Walker circulation and

surface easterly winds under global warming. The re-

sulting reduction of the zonal SST gradients along the

equator weakens the barrier preventing eastern Pacific

SST from triggering deep convection. In these condi-

tions, even a small increase in SST can significantly

alter atmospheric convection and favor a shift and

intensification of P in the tropical eastern Pacific

during warm events. Thus, if ENSO amplitude does

not increase with global warming, the superposition of

warm El Niño SST anomalies and the warmer back-

ground conditions can lead to an eastward displace-

ment of convection and an increased frequency of

extreme El Niño events (Cai et al. 2014; Chung

et al. 2014; Kug et al. 2010; Power et al. 2013; Zhou

et al. 2014).

FIG. 5. Amplification components, as in Fig. 4d, calculated frommodel subsets projecting an increasing, unchanged,

and decreasing amplitude (respectively) of SST cENSO variability. Vertical strips highlight regions with statistically

significant differences under a two-sided t test at a 10% level, with a sample size of 5, 10 and 5 models, respectively.
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Extreme La Niña events are also projected to become

more frequent, as explained in Cai et al. (2015) and

Capotondi (2015). During normal La Niña events, trade
winds intensify and cause the central Pacific to become

colder and drier, resulting in a westward shift of deep

convection. These features are enhanced during ex-

treme LaNiña events, and deep convection shifts farther
west toward the Maritime Continent. Anthropogenic

warming is projected to increase faster over the land-

masses in the Maritime Continent than in the central

FIG. 6. DJF precipitation (a),(b) along the equator (28S–28N) and (c),(d) at the NorthAmerican PacificWest Coast

(398–458N), during ElNiño andLaNiña events. Results are computed for the TOP20models, and for the three sets of

models classified by the magnitude of temporal variability of the cENSO pseudo-PC (s). The zonal means are

computed from the precipitation composites used to create Figs. 4d and 5, based on detrended cENSO and P fields.

Themultimodel average of s over 1900–99 is 1.07 (0.96) when calculated using the 5 (5) models projecting a decrease

(increase) in SST cENSO magnitude, and 0.93 when computed using the models with no discernible change in s.
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equatorial Pacific, resulting in an enhanced SST gradient

between these two regions. As a consequence, the

anomalous trade winds become stronger in the area

where the SST gradient increases, displacing water

westward and poleward and leading to enhanced up-

welling. Because of the increased vertical temperature

gradient (with surface waters warming faster than

deeper water) the latter process will produce relatively

colder anomalies in the central Pacific and will further

increase the temperature gradient between Maritime

Continent and the central Pacific, favoring the devel-

opment of extreme cold events. In the twenty-first-

century simulations, the enhanced reduction of precipitation

in the central-eastern Pacific during La Niña events

(Fig. 6b) is consistent with the projected increase in the

frequency of extreme La Niñas.
In themiddle and high latitudes, the climate responses

to ENSO events strongly depend on the locations of

tropical atmospheric convection centers, which affect

the propagation pathways of atmospheric waves. In

comparing idealized control and 23CO2 simulations

from eight CMIP3 models, Kug et al. (2010) show that

1) tropical Pacific SST increases resulting from GHG

warming promote the eastward shift of the main tropical

convections centers associated with both El Niño and La
Niña (in accord with our results) and 2) the eastward

shift of tropical convection anomalies results in sys-

tematic eastward shifts in the midlatitude DJF pre-

cipitation teleconnection pattern, again during both

ENSO phases. In the North American sector we find a

similar eastward shift of P anomalies in response to both

El Niño and La Niña in the s/ and sY cases (Figs. 6c,d).

In the s[ case, the increase (decrease) in P anomalies in

response to El Niño (La Niña) occurs at all longitudes.
The analysis of Zhou et al. (2014), which is most com-

parable to the to our s//El Niño case, yields analogous

results, with the spatial pattern of tropical SST warming

producing larger teleconnections changes than a spa-

tially uniform warming.

b. Three-term decomposition

With few exceptions (Watanabe et al. 2014; Wittenberg

2015), most previous studies focus on individual compo-

nents of projected P changes: the change in mean P, the

historical P variability, or the change in P variability

(i.e., the nonlinear term). Here, we consider the com-

bined effects of these three components on regional

scales. Because changes in mean and variability are both

spatially complex, it is difficult to intuitively predict how

the total P anomalies will behave in a particular region

(relative to some historical reference).

Our simple three-term decomposition framework

provides a quantitative estimate of the relative importance

of each of these terms in different geographical regions

(Fig. 7). It also helps to identify regions where the

projected twenty-first-century P responses to cENSO

variability are without precedent in the current cli-

mate. For example, an amplified P response to both

cENSO phases is projected over the northeastern Pa-

cific region. Here, however, the future P response to

La Niña lies within the range of historical variability,

while the future response to El Niño is projected to be

outside of the range of historical P responses. In the

southwestern United States, the dry conditions in re-

sponse to future La Niña events are projected to be

outside of the range of historical P responses. In con-

trast, the change in mean P over Mexico always yields

drier than historical conditions, independent of the

cENSO phase. These three examples illustrate that

reliable assessment of flood and drought risk in the

future must rely on estimates of all three components

discussed here.

5. Conclusions

Future ENSO-driven P responses are sensitive to

changes in both themean state ofP and to changes in the

amplitude and structure of ENSO-driven P variability.

To investigate how ENSO-driven P variability may

change in a warming climate, many previous studies

have relied on single-model AGCM simulations forced

with idealized greenhouse warming patterns, and/or

with an idealized El Niño–induced SST pattern (with

predetermined amplitudes) superimposed on some

predetermined global-mean SST change. In this study,

we rely instead on CGCM multimodel HIST18.5 sim-

ulations. Here, we seek to 1) identify a time-invariant

canonical ENSO (cENSO) pattern in observed SST

data; 2) project the simulated SSTs onto the observed

cENSO mode; 3) sort the simulations according to

whether they produce an increase, a decrease, or no

significant change in the magnitude of the cENSO var-

iability in the twenty-first century; 4) calculate various

measures of model performance in capturing observed

cENSO characteristics, and observed teleconnection

relationships between temporal variability in the

cENSO pattern and local P; and 5) develop a simple

heuristic model to partition twenty-first-century P

changes into mean state and variability components.

We find that CGCMswith better representation of the

structure and variability of the observed cENSO pro-

duce rainfall teleconnection patterns that are in better

accord with observations. We hypothesize that simula-

tions with larger amplitude cENSO variability trigger

deeper convection in the tropical Pacific region, thereby

forcing atmospheric teleconnection patterns that remain
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more stationary through time (section 3d). Finally, we

find that most regions of the globe exhibit enhanced

anomalies in futureP as a response to both El Niño– and
La Niña–like phases. This change in P is accompanied

by a clear eastward shift of teleconnection patterns in

the equatorial Pacific and in the North Pacific, which

occurs even in the absence of a robust increase in

cENSO variability amplitude.

Our study investigates the effects of a time-invariant,

observationally derived ENSO pattern on the geo-

graphical pattern of P anomalies. This relationship is

explored in the context of both twentieth- and twenty-

first-century climate change. Although our focus is spe-

cifically on this canonical ENSO mode, it is clearly

possible that other naturalmodes of SST variabilitymight

alter existing teleconnections between SST and P. It is

beyond the scope of this paper to consider how ENSO-

drivenP responsesmight be affected by 1) a change in the

SST structure of ENSO, including the recent prevalence

of central-Pacific over east-Pacific El Niño events (Yeh

et al. 2009); 2) GHG-induced changes in other modes of

variability; and 3) a seasonal shift in the ENSO life cycle.

Such issues merit further investigation.

As discussed in section 4, the amplification of the

ENSO precipitation response in the eastern Pacific and

the corresponding eastward shift of the precipitation

pattern may be associated with a projected enhanced

warming trend in the eastern equatorial Pacific. This

pattern of warming may result from a weakening of the

Walker circulation seen in some models (Vecchi et al.

2006) and in observations (Tokinaga et al. 2012). How-

ever, this view has been challenged by other observa-

tional studies (L’Heureux et al. 2013; Sandeep et al.

2014), which suggest that the Walker circulation may

instead have strengthened over the past century. This

strengthening is consistent with a cooling trend found in

the eastern Pacific in several observational SST datasets

after statistical removal of the ENSOmode (Compo and

Sardeshmukh 2010; Karnauskas et al. 2009; Solomon and

Newman 2012).10 There remain, therefore, important

uncertainties in the projected changes in SST and pre-

cipitation, as well as in their causes. Reducing un-

certainties in projections of twenty-first-century ENSO

behavior and related teleconnections may require several

decades of research. Despite these significant un-

certainties, our study establishes a useful conceptual

framework for decomposing and analyzing projected

changes in regional precipitation. This framework may

help to inform important current and future decisions

regarding food security and water resource management.
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